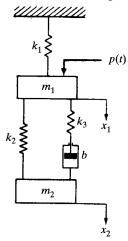
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING

ECEN 3723 Systems I Spring 2002 Midterm Exam #2



Choose any four out of five problems, Please specify					
1)	_; 2)	; 3)	; 4)	;	
Name :					
Student ID:					
E-Mail Address:					

Problem 1:

Consider the mechanical system shown below where p(t) is the external force input to the system. Using the force-voltage analogy to derive an *analogous* electrical system. Show the resulting circuit diagram.

(Hint: define the displacement of midpoint between k_3 and b as x_3 .)

Problem 2: Find X(z), the z-transform of

- a) $x(k) = k(k-1)(0.25)^{-k}u(k-2)$, and

Problem 3: Find x(k), the inverse z-transform of

a)
$$X(z) = \ln(z + a) - \ln(z - b)$$
, and

b)
$$X(z) = \frac{(1-e^{-1})z^{-1}}{(1-z^{-1})(1-e^{-1}z^{-1})}$$
.

Problem 4: Solve the following difference equation (k+1)x(k+1) - kx(k) = k+1where x(k) = 0 for $k \le 0$.

<u>Problem 5</u>: A linear, time-invariant discrete-time system is described by the transfer function

$$H(z) = \frac{z^2 - 2z + 1}{z^2 + z - 2}.$$

Find an input x(k) with x(k) = 0, k < 0 that gives the output response y(k) = 2u(k) - u(k-2).